Customer Need Type Classification Model using Data Mining Techniques for Recommender Systems

نویسنده

  • Kyoung - jae Kim
چکیده

Recommender systems are usually regarded as an important marketing tool in the e-commerce. They use important information about users to facilitate accurate recommendation. The information includes user context such as location, time and interest for personalization of mobile users. We can easily collect information about location and time because mobile devices communicate with the base station of the service provider. However, information about user interest can’t be easily collected because user interest can not be captured automatically without user’s approval process. User interest usually represented as a need. In this study, we classify needs into two types according to prior research. This study investigates the usefulness of data mining techniques for classifying user need type for recommendation systems. We employ several data mining techniques including artificial neural networks, decision trees, case-based reasoning, and multivariate discriminant analysis. Experimental results show that CHAID algorithm outperforms other models for classifying user need type. This study performs McNemar test to examine the statistical significance of the differences of classification results. The results of McNemar test also show that CHAID performs better than the other models with statistical significance. Keywords—Customer need type, Data mining techniques, Recommender system, Personalization, Mobile user.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Providing a model based on Recommender systems for hospital services (Case: Shariati Hospital of Tehran)

Background and objectives: In the increasingly competitive market of the healthcare industry, the organizations providing health care services are highly in need of systems that will enable them to meet their clients' needs in order to achieve a high degree of patient satisfaction. To this end, health managers need to identify the factors affecting patient satisfaction focus. T...

متن کامل

Customer Behavior Mining Framework (CBMF) using clustering and classification techniques

The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...

متن کامل

Improving electronic customers' profile in recommender systems using data mining techniques

Article history: Received March 29, 2011 Received in Revised form June, 18, 2011 Accepted 19 June 2011 Available online 20 June 2011 Recommender systems are tools for realization one to one marketing. Recommender systems are systems, which attract, retain, and develop customers. Recommender systems use several ways to make recommendations. Two ways are using more than the others: collaborative ...

متن کامل

A Recommender System Approach for Classifying User Navigation Patterns Using Longest Common Subsequence Algorithm

Prediction of user future movements and intentions based on the users’ clickstream data is a main challenging problem in Web based recommendation systems. Web usage mining based on the users’ clickstream data has become the subject of exhaustive research, as its potential for web based personalized services, predicting user near future intentions, adaptive Web sites and customer profiling is re...

متن کامل

Knowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services

The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012